

Ni基金属ガラス粉末の温間塑性加工・焼結特性

Warm-Formability and Sintering Behavior of Ni-based Metallic Glass Powder

松原 慶明*1、柳本 勝*2

Noriaki Matsubara、Katsu Yanagimoto

Synopsis:The formability and sintering behavior of Ni₆₀Nb₁₅Ti₂₀Zr₅ metallic glass powder prepared by gas atomizing was investigated by using precise hot press equipment.The structure of atomized metallic glass powder depended on its particle size, and only glassy phase was observed when the particle size was under 53 µ m. The glass transition temperature (Tg), crystallization temperature (Tx), and supercooled liquid region (ΔTx=Tx-Tg) of the Nibased metallic glass powder was 838K, 888K and 50K, respectively.

The hot press sintering under the precise control of temperature and pressure was conducted. The densification behavior depended on only working temperature, and the Ni-based metallic glass powder was consolidated to nearly full densify by hot press sintering with working temperature range 863-883K. On the other hand, the crystallization behavior depended on working time as well as working temperature. In the experimental study this time, the hot press condition achieving both full densification and no crystallization was temperature of 868K and pressure of 200MPa. The sintered fully dense body without crystallization exhibited high corrosion resistance nearly equal to Alloy C-276.

Key words: Ni60Nb15Ti20Zr5, metallic glass, hot pressing, full densification, glassy alloy powder

1. 緒言

東北大学の井上らによって発見された金属ガラスは、明 瞭なガラス遷移点Tgと安定した過冷却液体領域ΔTxを示す 非晶質金属であり、耐食性、強度、磁性などにおいて優れ た特性を示す。また、過冷却液体領域の広い合金系におい ては、広い温度範囲でニュートン粘性流動的な挙動を示す ガラス状態となるため、従来の結晶性金属では困難な精密加 工が可能となる優れた成形加工性を持つ素材である¹⁻³⁾。これ らの特性を活かして、超精密部材や高精度計測部材、燃料 電池部材などへの応用が研究されている¹⁻³⁾。金属ガラス の成分系の一例をTable1に示す。そのなかでNi基金属ガ ラスは、優れた高強度⁴⁾、高耐食性⁵⁾を有しており、燃料 電池のセパレータなどへの応用研究が行われている⁶⁻⁷⁾。 しかしながら、Ni基金属ガラスにおいて、貴金属を含まな

Table1 Examples of metallic glass composition.

Based metal	Examples of composition		
Ni	$Ni_{60}Nb_{15}Ti_{20}Zr_5$, $Ni_{53}Nb_{20}Ti_{10}Zr_8Co_6Cu_3$		
Fe	$Fe_{57.6}Co_{14.4}Si_4B_{20}Nb_4$, $Fe_{75}Ga_5P_{12}C_4B_4$		
Ti	$Ti_{53}Cu_{15}Ni_{18.5}Zr_{3}A_{17}Si_{3}B_{0.5}, Ti_{50}Cu_{25}Ni_{15}Zr_{5}Sn_{5}$		
Zr	$Zr_{55}Cu_{30}Al_{10}Ni_5$, $Zr_{65}Cu_{15}Al_{10}Ni_{10}$		
Cu	$\mathrm{Cu}_{42}\mathrm{Zr}_{42}\mathrm{Al}_8\mathrm{Ag}_8,\mathrm{Cu}_{60}\mathrm{Zr}_{30}\mathrm{Ti}_{10}$		
Pd	$Pd_{40}Cu_{30}Ni_{10}P_{20}$		

*1 研究・開発センター 機能材料グループ

*2 研究・開発センター 機能材料グループ長、工博

い成分系では臨界直径10mmを超えるバルク金属ガラスを 作製することは非常に困難であり、応用面で課題となって いるため、低いガラス形成能を改善する成分、組成探索が 盛んに行われている7-8)。一方、金属ガラス単相の球状粉 は、各種アトマイズによって比較的効率よく得ることがで きるため、金属ガラス粉末の加工は、応用面での研究開発 が期待される分野である。その一環として、金属ガラス粉 末を焼結させてバルク成形体を得るための研究も行われて いるが⁹⁻¹¹⁾、Ni基金属ガラス粉末の焼結については、従来 のホットプレス装置では金型を外周部から抵抗加熱もしく は誘導加熱するため焼結温度の精密な制御が難しく、金属 ガラス粉末をガラス状態を保ったまま焼結することが非常 に困難であった。そこで、バルクと同様の金属ガラス焼結 体を得る手段として、主に放電プラズマ焼結(SPS焼結) が利用されている12-13)が、SPS焼結は装置が複雑で大規模 化が困難であることや、パルス通電により粉末表面が非常 に高温となるため、金属ガラスが結晶化する可能性がある ことが考えられる。そこで我々はSPS焼結よりも簡便な手 法により効率よく得る方法として、ガスアトマイズ粉末を 用いた精密ホットプレスによる高密度化成形を検討した。 精密ホットプレスは、サーボモータ制御による精密な荷重 制御と、上下ラムからの加熱による従来のホットプレス装 置では困難な温度の精密制御が可能であるため、より詳細 な加工条件を設定し、Ni基金属ガラスのバルク成形体を得 るための検討を行うことができる。また、金属ガラス粉末 の高密度化挙動、結晶化挙動に影響する要因を把握するた めに焼結体の測定結果を多変量解析した。

2 試料および実験方法

焼結実験に用いたNicoNb15Ti2oZr5金属ガラス粉末はガス アトマイズにより作製した。Ni、Nb、Ti、Zrの原材料を 2kgアトマイザー装置内でArガス雰囲気中にて混合溶解 し、直径2mmのノズルから噴射圧7.8MPaでArガスを用 いてアトマイズを行った。

これを各粒度別に分級したのち、X線回折装置(XRD; 50keV、200mA、Cu-Kα)を用いて、ガラス相の確認を 行った。また、ガラス相のガラス遷移温度Tgおよび結晶 化温度Txは示差走査型熱量計(DSC)を用い、Arガス気 流中、昇温速度0.67K/sの条件で測定した。さらに、ガラ ス相の過冷却液体状態での熱的安定性を測定するために、 DSCを用いてArガス気流中、昇温速度0.67K/sの条件で、 ガラス遷移温度Tgから結晶化温度Txまでの各温度に昇温 した後、3.6×10³s保持し、結晶化の発熱反応開始までの 時間t_sおよび、発熱反応終了までの時間t_iを測定した。また、 走査電子顕微鏡(SEM)にて粉末外観の観察を行った。

金属ガラス粉末の温間プレス焼結加工は、精密ホットプレス装置(SCIVAX社製 X-200)を用いて真空中で行った。 その概略図をFig.1に示す。精密ホットプレス装置は上下のラム中にあるヒーターからの熱伝導により、金型および 粉末を加熱し、ラム中の冷却管にガスもしくは水を流して 冷却を行うことで温度を精密に制御できる。上ラムはサー ボモータ駆動により0.05mmピッチでの精密位置制御を行 うことができる。

円筒状のステライト製金型(内径 \$ 8mm)の中に金属

Fig.1 Schematic illustration of the precision hot pressing equipment used in the present study.

ガラス粉末0.4gを充填し、上記精密ホットプレス装置で 焼結加工を行った。プレス温度は、過冷却液体状態の粘性 流動性を利用した加工が可能となるガラス遷移温度Tg近 傍から結晶化温度Tx近傍までの温度範囲とし、プレス圧力 は40MPaから200MPaまで変化させた。プレス金型送り 速度は0.05mm/s、加圧保持時間はプレス金型の送りが停 止してから5s後に加圧を停止した。

温間プレス焼結加工後の結晶化の評価は、前述のX線回 折測定にて行った。X線回折パターンの各ピークをプロフ ァイルフィッティングの手法を用いてピーク分離し、非晶 質を示すブロードなピークと結晶を示すシャープなピーク の面積比から結晶化度を求めた。密度については、焼結体 表面のポアの有無を金属顕微鏡にて観察した写真を二値化 し、その焼結体とポアの表面面積比を代用特性として評価 を行った。得られたデータを多変量解析し、高密度化挙動、 結晶化挙動への温度、圧力の影響を調査した。

高い耐食性をもつNi基金属ガラスの性質が焼結体でも保たれていることの確認のため、作製した焼結体を濃度12NHCI(303K)に6h浸漬し、外観と重量の変化を調査し、耐食性の評価を行った。比較材として973K、1hの熱処理によって完全に結晶化させた焼結体とAlloy C-276、SUS316Lの溶製材を用いた。

3 実験結果および考察

3.1 Ni60Nb15Ti20Zr5金属ガラス粉末の作製と基礎特性測定

Fig.2に各粒度に分級後のNi基金属ガラス粉末のX線回折 結果を示す。粒径53µm以下の粉末では非晶質を示すハロ ーパターンのみの回折結果が得られており、粒径53µm以 下の粉末はすべて金属ガラス単相と考えられる。結晶化度 の定量評価では粒径53~75µmでは0.63%、粒径75~ 105µmでは6.92%、粒径105~150µmでは21.38% であった。Fig.3に得られた金属ガラス単相の粉末の走査 電子顕微鏡(SEM)写真を示す。粉末はほぼ球状であり、 表面は凹凸がなくスムーズな形態をしていた。これら金属 ガラス単相となった粉末のDSC測定の結果、ガラス遷移

Fig.2 X-ray diffraction patterns of Ni60Nb15Ti20Zr5 metallic glass powder in various particle size.

Fig.3 Scanning electron micrograph of Ni₆₀Nb₁₅Ti₂₀Zr₅ metallic glass powder produced by gas atomizing.

Fig.4 Time-Temperature-Transform diagram of $Ni_{60}Nb_{15}Ti_{20}Zr_5$ metallic glass powder.

温度Tgは838K、結晶化温度Txは888K、過冷却液体領域 の広さΔTxは50Kであった。この値は同じ組成のバルク金 属ガラスとほぼ等しい⁴⁾。この過冷却液体領域近傍での、 等温変態線図(TTT線図)をFig.4に示す。保持温度843K では3.6×10³sの保持時間でも結晶化が見られず、逆に保 持温度883Kでは保持時間に達するとほぼ同時に結晶化が 認められた。Fig.4の結晶化開始時間t₈以下の時間で加圧焼 結を終えることで、熱による結晶化をおこすことなく加工 可能であると考えられる。

3.2 金属ガラス粉末の温間焼結加工

ガスアトマイズによって得た球状の金属ガラス単相粉末 (粒径38µm以下)を温間加圧焼結し、焼結体を作製した。 加工条件をFig.5にまとめて示す。これらの加工条件の内、 Fig.5に示す代表的な条件ABCDの4つを取上げ、実験結果 について考察した。Aはガラス遷移温度Tgに近い低い温度 での加工、B、Cはガラス遷移温度Tgと結晶化温度Txの中 間の温度で、異なる加工圧力(B:40MPa、C:200MPa) での加工、Dは結晶化温度Txより高い温度での加工である。

Fig.5 Hot pressing conditions of Ni₆₀Nb₁₅Ti₂₀Zr₅ metallic glass powder in the present study.

これら4つの条件で作製した焼結バルク体について、焼結 体表面の顕微鏡写真と、X線回折測定の結果をFig.6にまと めて示し、Ni基金属ガラス粉末の焼結における高密度化挙 動、結晶化挙動のそれぞれについて考察を行った。

3.2.1 金属ガラス粉末焼結体の高密度化挙動

Fig.6の顕微鏡写真温度863Kにて加工したB、C条件で は、表面に空孔などが見られず、ほぼ100%密度となっ た.B、C条件よりも加工温度が低いA条件、加工温度が高 いD条件では高密度化しなかった.表面の焼結体の面積比率 を求めるとA条件では72.9%、D条件では74.8%であっ た.また、高密度化したB、C条件は加工圧力がそれぞれ 40MPaと200MPaと大きく異なったが同様に高密度化し たことから、高密度化のためには最適な加工温度を設定す ることが最も重要であり、最適温度域(863~883K)で は加工圧力によらず高密度化することがわかった。

3.2.2 金属ガラス粉末焼結体の結晶化挙動

高密度化したB、C条件について粉末焼結バルク体の結 晶化度に着目するとB条件では結晶化度は11.7%でハロー パターンに所々ピークが現れたのに対して、C条件では結 晶化度は0%でハローパターンのみとなっており、ガラス 相単相状態を保っていた。これは、加工圧力が小さいB条 件ではC条件に比べ同じ加工を行うのにかかる時間、つま り加工温度での保持時間が長くなったためであると考えら れる。B、C条件の加工温度868Kでの保持時間を比較する と、それぞれ150sと30sであり、Fig.4に示したTTT線図 において、B条件はガラス相と結晶相の2相の領域、C条件 はガラス相単相の領域に相当することから、Fig.4に示し たDSC測定の結果と一致していることが分かる。したが って、非晶質の状態を維持するためには温度の設定に加え て、高圧力によって加工時間を短くすることが必要である とわかった。つまり、本実験条件では加工圧力は 200MPaとすることが望ましい。

また、B、C条件より加工温度が低いA条件では結晶化度 0%でガラス相単相を保持しており、温度が高いD条件で

Fig.6 Optical micrographs of and X-ray diffraction patterns surface of sintered body in various hotpressing conditions.

は結晶化度は65.1%で、結晶化がB条件よりも進行した。 Aの加工時間は176sであり、Fig.4のTTT線図においては A条件の加工温度843Kでの安定時間が約300sであったこ とからガラス相が安定な領域で加工されたものと思われ る。D条件にて焼結体が高密度化しなかったのは、熱によ る結晶化が加工前に進行し、過冷却液体状態ではなくなっ たためと考えられる。

3.2.3 温間加工焼結条件のまとめと多変量解析結果

以上の検討結果をFig.7にまとめた。加工温度863~ 883Kでは加工圧力によらず金属ガラス焼結体はほぼ 100%に高密度化した。また、 Fig.7で●で示されるガラ ス単相の領域は、加工温度と加工圧力の双方に依存してい ることが分かる。ほぼ100%密度かつ非晶質な焼結体を得 ることができる加工条件は加工温度863K、加工圧力 200MPaを含むFig.7の三角で示した領域であると考えら れる。

すべての加工条件と焼結体の分析結果をTable2に示す。 これをそれぞれ焼結体表面の面積率と結晶化度について重 回帰分析を行った結果をTable3に示す。重回帰分析の結 果から、高密度化挙動を表す焼結体表面の面積率について は加工温度のみを分析パラメータとしたときに分析の確か らしさを表す自由度調整済重相関係数(補正R²)の値が最 も大きくなった。これに対して、結晶化挙動を表す結晶化 度については加工温度と加工圧力の両者を分析パラメータ としたとき最も補正R²値が高くなった。このように重回 帰分析の結果からも、高密度化挙動と結晶化挙動それぞれ に対して影響があるパラメータが異なることがわかる。加 工圧力については、結晶化を防ぐために高いほうが良いた め、装置能力の最大値である200MPaが最も好ましいと 考えられる。加工温度に関しては、焼結体表面の面積率と

Table2	Summary of relationship between hot					
	pressing condition and densification or					
	crystallization.					

Pressing condition		Result of Analysis	
Temperature,	Stress,	Area ratio of	Degree of
T/K	/MPa	sintered body	crystallization
813	20	39%	0.0%
813	200	41%	0.0%
843	40	89%	5.5%
843	120	80%	0.0%
843	200	73%	0.0%
858	200	84%	0.0%
863	40	97%	11.7%
863	120	97%	13.9%
863	200	99%	0.0%
883	40	98%	33.6%
883	120	99%	16.5%
883	200	99%	22.6%
903	120	75%	65.1%

Table3 Result of multiple regression analysis for area ratio of sintered body and degree of crystallization.

	Analysis _I	parameter	Result of analysis	
	Temperature, T/K	Stress, /MPa	Area ratio of sintered body Adjusted R ²	Degree of crystallization Adjusted R ²
1	0	0	0.4505	0.5910
2	0	_	0.5000	0.5764

結晶化度をそれぞれ加工温度に対してブロットし(Fig.8)、 2次式で近似したところ、以下の式を得た。

(焼結体面積率) = -0.0001676 × T² + 0.2008739 ×T - 126.5356005・・・(式1)

(結晶化度) = 0.0001283 ×T² - 0.1438304 × T + 89.0995092・・・(式2)

T:加工温度、/K

近似的に焼結体面積率90%以上、結晶化度10%以下の 領域をほぼ100%密度、非晶質と仮定して上記の式から計 算すると、それぞれ848-897K、800-868Kとなり、両 者が重なる領域は848-868Kとなる。今回の実験でほぼ 100%密度かつ非晶質な焼結体を得た加工温度は863Kで あり、多変量解析結果と良く一致していた。

3.3 焼結体の耐食性評価

Fig.9に濃塩酸による耐食性の実験結果を示す。浸漬後の非晶質焼結体は外観上の変化は見られず、腐食度は 1.62g/m²・hでSUS316Lの腐食度97.65g/m²・hより低 く、Alloy C-276の腐食度0.00g/m²・hよりは若干劣るも のの優れた耐食性を示した。結晶質焼結体では耐食性が大 幅に劣化し、腐食の進行により焼結体が粉化した。今回行 った加工条件のうち、非晶質相単相を保ったままほぼ 100%密度に成形することができたNi基金属ガラス焼結体 はAlloy C-276に近い非常に優れた耐食性を示すことが分 かった。

Fig.8 Relationship between work temperature and densification or crystallization behavior.

Fig.9 Optical micrographs and Corrosion rate of the Ni60Nb15Ti20Zr5 metallic glass sintered body, crystallized Ni60Nb15Ti20Zr5 sintered body, SUS316L and Alloy C-276 in 12N HCI solutions at 303K open to air.

4 まとめ

強度、耐食性に優れるNi基金属ガラスのバルク成形体を 効率よく得ることを目的として、Ni基金属ガラスのガスア トマイズ粉末を精密ホットプレス装置で温間成形焼結して バルク成形体を作製した結果、以下のことがわかった。

 Arガスアトマイズにて作製したNi60Nb15Ti20Zr5金属ガ ラス粉末は粉末粒径53µm以下ですべてガラス単相で あった。得られたNi基金属ガラス粉末のガラス遷移温 度Tgは838K、過冷却液体領域の広さ Δ Txは50Kであった。

- 2) ほぼ100%密度になる精密ホットプレス条件は、加工 温度863~883Kであり、温度に強く依存し、適切な 温度域であれば圧力によらず100%密度となることが わかった。結晶化は、温度に最も強く影響を受けるが、 それに加えて、加工温度での保持時間も関係し、加工 時間が短くなる高圧力領域では、より高温までガラス 相単相が保たれることがわかった。加工温度863K、 加工圧力200MPa近傍の加工条件ではガラス相単相 かつほぼ100%密度となった。
- 3) 高密度化挙動を表す焼結体表面の面積率および結晶化 挙動を表す結晶度について得られた焼結体の加工条件 との関係を多変量解析した結果、実験結果と良く一致 することがわかった。
- 4) ガラス相単相かつほぼ100%密度な焼結体の耐食性を 調査した結果、Alloy C-276に近い優れた耐食性をも つことがわかった。

謝 辞

本論文は東北大学工学研究科の川崎研究室との共同研究 成果を「粉体および粉末冶金」に投稿した論文をもとに多 変量解析の考察を加筆したものである。研究に協力いただ いた川崎教授ならびに研究室の方々に深く感謝いたしま す。

参考文献

- 1) 井上明久:山陽特殊製鋼技報, 14 (2007), 2.
- A.Inoue : Proc. Japan Acad., 81, Ser.B (2005),
 6, 156.
- A.Inoue : Proc. Japan Acad., 81, Ser.B (2005),
 6, 172.
- 4) A.Inoue, W.Zhang, T.Zhang: Mater. Trans., 43 (2002), 1952.
- 5) C.-L.Qin, W.Zhang, H.Nakata, H.M.Kimura, K.Asami and A.Inoue : Mater.Trans., 46 (2005), 4, 858.
- A.Inoue, T.Shimizu, S.Yamaura, Y.Fujita, S.Takagi and H.M.Kimura : Mater. Trans., 46 (2005), 7, 1706.
- 荷山雅紀、山浦真一、木村久道、井上明久:粉体および粉末冶金、54 (2007)、11、773.
- D.Xu, G.Duan, W.L.Johnson, C.Garland : Acta Mater., 52 (2004), 3493.
- 9) Y.Kawamura, H.Kato, A.Inoue and T.Masumoto: Powder.Metallurgy, 33 (1997), 2, 50.
- 10) A.Inoue, Y.Kawamura, T.Shibata and K.Sasamori : Mater.Trans. JIM, 37 (1996), 6,

1337.

- 11) 渡辺龍三, 木村久道, 加藤秀美, 井上明久:粉体 および粉末冶金, 54 (2007), 11, 761.
- 沈宝龍,木村久道,井上明久,大久保昭,大森守, 水嶋隆夫:粉体および粉末冶金,48(2001),9, 858.
- 13) 謝国強, D.V.Louzguine, 大久保昭, 木村久道, 井上明久:日本金属学会2007年秋季講演会概要集, 梶原義雅編, (2007), 278.
- 14) J.K.LEE, H.J.KIM, T.S.KIM, S.Y.SHIN Y.C.Kim, J.C.Bae : J. Mater. Proc. Tech., 187-188 (2007), 801.

■著者

松原 慶明

柳本勝