

山陽特殊製鋼の 3D プリンティング技術

久世 哲嗣*

KUSE Tetsuji

1. 緒言

金属3Dプリンティング(金属3D造形)には直接積層法と 間接積層法があり、このうち直接積層法は金属粉末単体に レーザー光、もしくは電子ビームを走査して照射部のみを溶 融させ、この層を繰り返し積層・溶融させることで三次元構 造体を作製する方法である。

この直接積層法は、金属粉末単体をそのままハンドリン グするため、粉体特性(形状、粒径等)の制御と同時に、金 属の溶融を伴うプロセスであることから材料物性に応じた 造形条件の選定という2つのテクノロジーが重要になる。

本報では、3D造形全般について、これまでの当社の技術 的な取り組み概要について解説する。初めに、3D造形に求 められる技術として当社が考える4つの項目について、その 理由と対応方針の概略を説明したうえで、各項目について、 取り組み内容の詳細を紹介する。

2.3Dプリンティングに求められる技術と当社の 強み

当社は、以下4項目が3D造形において特に求められる技術と認識している。

- 1. 粉末の流動性(高い球形度)
- 2. 造形時の割れ制御
- 3. 造形体の高密度化
- 4.3Dに適した新規合金開発

下記にその理由を述べたうえで、3章以降に当社の具体的 な取り組みを紹介する。

2.1 粉末の流動性(高い球形度)

造形時の前提として、レーザーや電子ビームが照射され る箇所に適切な量の粉末が存在しないと健全な造形体は作 製できない。例えば、粉末が少ない場合は、粉末を溶融す るための熱エネルギーが既に固化されている造形体に与え られるため、造形体表面が焦げたり、波を打ったような形状 になったり、場合によっては材料の組織が変化することがあ る。一方、粉末が多い場合は、粉末を溶融するための熱エネ ルギーが不足することになるため、造形体内部に未溶融粉 末を内包する場合がある。適切な量の粉末が積層できない 要因として、粉末形状が歪んでいる場合や、表面性状に凹凸 がある場合が考えられる。

このような理由から、造形場所への粉末充填度について の代表的な指標である「粉末の流動性」は、粉末床溶融結 合法(パウダーベッド方式)、指向性エネルギー積層法(パウ ダーデポジション方式)のいずれの装置であっても重要な特 性の1つであるといえる。この流動性を確保するために、当 社では真空誘導溶解不活性ガスアトマイズによる製造方法 で3D用合金粉末を製造し、球形度が高く、良好な流動性を もたせている。しかしながら、粒径の大きい粉末や一部の 鋼種において微細な粉末(サテライト)が付着する場合があ る。その場合、後述するサテライトを除去する工程を実施す ることで、粉末の流動性を確保している。当社の取り組み内 容の詳細は3章で述べる。

2.2 造形時の割れ制御

3Dプリンティングでよく報告されている問題として内部 応力と造形割れが挙げられる。

内部応力は、造形プレートと造形体の熱膨張率や熱伝導 率などの差が大きくなることが要因で生じるが、造形後の熱 処理を施すことでほぼ解消される。より顕著な内部応力の 例として造形プレートからの造形体剥離があるが、この場合 は造形プレートの選定や造形プレートの予熱、造形条件の 再設定が必要になる。

一方、造形割れは熱処理や造形条件を再設定しても抑制 が困難である。造形割れは、その発生機構、形態より、溶 接割れと同様の課題と考えられ、溶接割れの改善に関する 知見として、例えば、ステンレス鋼のSUS316Lに関しては、 構成している主元素の比率が同じでもP(リン)とS(硫黄) の合算値が高いと溶接割れが生じることが分かっている¹⁰。 また、炭素鋼については、炭素量に対するMn(マンガン) とSの比を制御することで溶接割れの発生を抑制できるこ とが報告されている²⁰。

このように、ステンレス鋼、炭素鋼いずれの場合に対して も、溶接時の割れ制御には成分調整、特に不純物の低減が

^{*} 粉末事業部 粉末技術部 技術2グループ

必須であることが分かっている。これは3D造形における造 形時の割れ制御も同様と考えている。当社の取り組み内容 の詳細は4章で述べる。

2.3 造形体の高密度化

造形体に空孔やクラックが存在すると材料の特性を十分 に発揮できないため、造形体を高密度に造形することは重 要である。高密度な造形体を作製するためには、材料・造形 条件の両面を最適化することが必須になる。材料面からは、 平均粒子径、粒度分布幅、球形度、流動度、かさ密度など が挙げられるが、これだけに留まらない。また、造形条件面 からは、レーザーの出力、走査速度、積層厚さ、ピッチ幅、 オフセット幅、オーバーラップ幅などが挙げられるが、こち らに関しても同様である。つまり、材料・造形条件の両面を 最適化するためには非常に多くの因子が存在し、それら因 子の全てを変化させて造形、解析を実施するためには多く の時間を費やすことになる。このような理由もあり、因子の 1つである粉末材料の特性を固定して、各装置メーカーが操 作しやすい造形条件を最適化させる傾向にある。事実、粉 末の仕様は装置メーカーが指定することが多いが、合金の 種類は未だ少ない。そのため、装置ユーザーがオリジナルの 合金を試したいと思っても、装置メーカーのラインナップに 存在しないのが実情である。さらに、1鋼種に付き1種類の 仕様しかないため、現状よりも作製時間を速くしたい、仕上 がりの表面粗さを小さくしたい等の要望には応えられない。

当社のガスアトマイズ装置で製造される粉末は、アトマイズ 条件や鋼種によって多少変動するが、粒径は約10~300 µm で正規分布の形状をとり、アトマイズ後の分級で所定の粒径に 揃えることが可能である。その際に、粒径を大きく仕上げれ ば、1層あたりの積層厚さが厚くなるので造形に費やす時間は 短くなる。また、粒径を小さく仕上げれば、仕上がりの表面粗 さは小さくなる。粒径を大きく仕上げる場合、正規分布の幅を より広く使用することができるため、歩留まりが向上し、装置 ユーザーにはコスト削減に繋がると考えられる。

このような理由から、装置ユーザーへの提案を視野に入れ、当社では粉末粒径が及ぼす造形性についてのデータ収 集を実施している。当社の取り組み内容の詳細は5章で述べる。

2.4 3Dに適した新規合金開発

3Dプリンティングに使用される金属粉末は、耐食部品等 に使用されるSUS630やSUS316L等のステンレス、金型 等に使用されるマルエージング鋼、高温用途で使用される Ni基超合金といった様々な合金・鋼種がある。それに加えて、 多くの企業、大学、研究所等が、3Dプリンティングや金属 粉末の改良を進めている³。

当社でも新規合金開発を実施しており、その例としてCo (コバルト)フリーマルエージング鋼粉末、銅合金粉末など がある。当社の取り組み内容の詳細は6章で述べる。

3. 粉末の流動性に関する当社の取り組み

3Dプリンティング用金属粉末の流動性を確保するため に、当社では球形度の高い粉末の開発を進めてきた。具体 的には、ガスアトマイズ条件の最適化及びアトマイズ後の後 加工である。

Fig.1に海外製粉末のSEM画像一例を示す。50 μm前後 の粉末にサテライトと呼ばれる微細な粉末が付着している ことが分かる。このサテライトの存在は粉末の流動性を大 きく損なうため、除去することが理想である。

Fig.2に当社で取り組んでいるサテライト除去工程の模式 図を示す。空気流によって金属粉末を加速した後、金属粉 末同士及び金属粉末と流路壁面との衝突により、金属粉末 を解砕・分散させる。機械的可動部が無いためコンタミネー ションが少ないのが特長である。その後、分散された粉末 を含む空気流の流れ方向を急変させることで、慣性の大き な粗大粒子(粗粉)は遠心力により、慣性の小さな微細粒子 (微粉)は抗力により分級される⁴⁾。

Fig.3に海外製粉末と上述のサテライト除去工程を施し た当社粉末との特性比較例を示す。当社従来材はガスアト マイズ条件を最適化したのみ、当社改良材はアトマイズ後 にサテライト除去を施したものである。当社従来材は、海 外製粉末と同等以上の流動性が得られていることが確認で きる。さらに当社改良材では、サテライトはほぼ確認でき ず、球形度を示す指標は、海外製粉末の0.85~0.89に対 して0.91~0.93となり、明確な改善が確認できた。流動 度については、海外製粉末と当社改良材では1~3秒の差が 確認できた。

以上より、当社金属粉末は一般的な海外製粉末と比較し て流動性に優れているため、より金属3Dプリンティングに 適した金属粉末といえる。

Fig.1 SEM image of gas atomize powders by a foreign manufacturer.

4. 造形時の割れ制御に関する当社の取り組み

金属3Dプリンティングでよく使用される材料の1つにNi 基超合金がある。その中でも、Alloy 718は国内外問わず多 くの3Dプリンティングでパラメータレシピの開発がされて いる。Ni基超合金の造形可否はAlとTiの添加量に大きく依 存するとされる報告が多く⁵⁾、それによるとAlloy 718は健 全に造形できる部類に該当する。

一方、Alloy 718よりも高温特性が優れている材料とし てAlloy 713Cがある。Alloy 713CはAl含有量が約6.0 % であり、Alloy 718のAl含有量約0.6 %と比較すると10倍 高い。また、溶製材における870 ℃での引張強度はAlloy 718が約330 MPaに対して、Alloy 713Cは約730 MPaと 2倍以上である⁶⁾。このような高Al含有・高強度材料は溶融 状態から急冷凝固する際の割れ感受性が高いため、これま で造形が困難とされていた。これに対し、当社では①造形体 の割れ部解析、②造形条件の最適化によって、Alloy 713C の健全な造形に取り組んだ。ここで、健全な造形とはクラッ クや空孔が無い状態の造形体を指す。

4.1 造形体の割れ部解析

Fig.4に造形体を強制剥離させた破面のSEM像を示す。 (a) は全体、(b) はクラックを中心に拡大した写真である。 クラックに明確な起点が無く、破面に凝固組織が確認でき たことから、凝固割れであると推定される。

Fig.5にクラック近傍におけるEPMAマッピング像を示 す。(a)は組成像を、(b)はS(硫黄)のマッピングであ る。クラック近傍にSが偏析しているため、Sが凝固割れ

Fig.2 Process image of removing satellite.

	foreign powder	conventional powder	improved powder
SEM image	<u>50 µт</u>	<u>50 µт</u>	<u>50 µт</u>
Sphericity	0.85~0.89	0.89~0.91	0.91~0.93
Flow rate (s/50g)	16.5~17.5	15.5~16.5	14.5~15.5

Fig.3 Characterizations of foreign powder and Sanyo's powder.

Fig.4 Fracture surface image of Alloy 713C built by additive manufacturing in (a) overview, (b) magnification of area A in (a).

4.2 造形条件の最適化

レーザー照射時の積層1層分の単位体積当りに入熱され るエネルギー密度は、(1)式のように表される。

$$E = \frac{P}{vdt} \cdot \cdot \cdot (1)$$

なお、E (J/mm³) はエネルギー密度、P (W) はレーザー の出力、v (mm/s) はレーザーの走査速度、d (mm) は レーザーの走査ピッチ幅、t (mm) は積層厚さである。こ れら各パラメータを変化させ欠陥が無い最適条件を見出す こととした。

Fig.6にPI713C(当社開発済のAlloy713C相当)、Sを 低減させたPI713C、およびS低減と造形条件を最適化し たPI713C造形体の断面組織及び相対密度を示す。

結果として、偏析の起因となるSを低減させる成分調整 と、最適な製造条件とを組み合わせることで、健全な造形 体が難しいPI713Cにおいても高密度な造形体の作製が可 能となった。

このように当社では、材料面と造形条件の両面から検討 を行うことで、今まで造形できないとされていた合金や、 新しい材料の造形を可能にする技術開発を続けている。

5. 高密度化に関する当社の取り組み

造形体の相対密度は装置側の造形条件によって大きく変 化することが分かっているが、粉体特性が与える影響は明ら かではない。そこで、粉体特性の影響を解析する取り組み例 として、本報では粉末粒度の影響による造形体の相対密度 差の検討結果を紹介する。

Fig.7にQM300(当社開発済のマルエージング鋼、18% Ni 型 強度2050MPa相当)造形体断面の光学顕微鏡像を示す。 (a)は-63μm、(b)は-106μm、(c)は-106/+63μm である。Fig.7では、エネルギー密度は左上が最も小さく、 右下が最も大きい。エネルギー密度が小さい箇所ではいず れの粒度でも空孔が目立ち、量は-63μm < -106μm < -106/+63μmの順に増加する。つまり、粗粉の割合が多い程、欠陥が多くなる傾向であることが分かった。一方、エ ネルギー密度が高い箇所では、いずれの粒度でも空孔なく健 全に造形がされており、粒度差による差異は確認できなかっ た。

Fig.8にそれぞれの粒度のエネルギー密度における相対 密度を示す。エネルギー密度75 J/mm³までは、造形体の相 対密度は粉末粒度に大きく影響されるが、75 J/mm³を超え るとどの粉末粒度においても相対密度は99.5 %以上であ ることが分かった。

Fig.5 EPMA of Alloy 713C built in (a) composition image, (b) Sulfur mapping.

Fig.6 Microscope image and relative density of PI713C built by each condition.

(a)			Laser power (W)		
			About 200	About 300	About 400
Scanning speed (mm/s)	About	1100	<u>1.0 mm</u>	<u>1.0 mm</u>	<u>1.0 mm</u>
	About	1000	• <u>1.0 mm</u>	<u>1.0 mm</u>	<u>1.0 mm</u>
	About	900	<u>1.0 mm</u>	<u>1.0 mm</u>	<u>1.0 mm</u>

(b)			Laser power (W)		
			About 200	About 300	About 400
Scanning speed (mm/s)	About	1100	<u>1.0 mm</u>	<u>1.0 mm</u>	• ; <u>1.0 mm</u>
	About	1000	<u>1.0 mm</u>	<u>1.0 mm</u>	<u>1.0 mm</u>
	About	900	<u>1,0 mm</u>	<u>1.0 mm</u>	<u>1.0 mm</u>

(c)			Laser power (W)		
			About 200	About 300	About 400
ing speed (mm/s)	About	1100	1 <u>970</u>	<u>1.0 mm</u>	<u>1.0 mm</u>
	About	1000	kumm	<u>1.0 mm</u>	<u>1.0 mm</u>
Scann	About	900	<u>1.0 mm</u>	1.0 mm	1.0 mm

Fig.7 Microstructures of QM300 built in (a)-63 μ m, (b)-106 μ m, (c)-106/+63 μ m.

Fig.8 Effect of energy density on relative density.

6.3Dプリンティングに適した当社の新規合金開発

Coフリーマルエージング鋼粉末

マルエージング鋼は極低炭素の高Ni系マルテンサイトに 時効硬化元素を添加し、マルテンサイト地で時効硬化する合 金である。マルテンサイト変態直後の強度(硬さ)は低いの で靱性が高く、これを時効することで強化する。時効による 強化機構は、主にNi₃MoやNi₃Ti、Ni₃AIの微細分散析出に よると考えられている^{7,8}。

ー方、特定化学物質障害予防規則等が改正され、2013年 1月1日からCo及びその無機化合物に健康障害防止措置が 義務づけられた。これによって、Coを含有するマルエージン グ鋼の製造・取扱い作業全般について、屋内作業場での発 散抑制措置、局所排気装置の性能要件・点検・届出、除塵 装置の設置が必要になった⁹⁾。

このような背景から、当社ではQM300の特性を維持しつつ、特定化学物質であるCo添加を回避したCoフリーマルエージング鋼を開発した¹⁰⁾。

Fig.9に成分調整、熱処理条件調整を実施したCoフリーマルエージング鋼の引張強度とシャルピー衝撃値の相関を示す。図中の写真は抽出残差後のTEM像、グラフはXRDである。マルエージング鋼の通常熱処理(溶体化熱処理:800 C×1 h、空冷後、時効熱処理:480 C×3 h)後のQM300は強度約2000 MPa、シャルピー衝撃値約27 J/cm²と高強度、高靭性な材料であるが(図中●)、Coを抜いた組成になると強度の顕著な劣化(約2000 MPa→約1600 MPa)が確認された(図中■)。CoはMoの固溶度を下げるためNi₃Moの析出量を増加させる効果があるという報告より¹¹⁾、強度の劣化はNi₃Moの析出が減少した影響が出ているものと考えている。

ー方、マルエージング鋼の時効硬化に及ぼす影響はMo、 CoよりもTi、AIの方が大きいとの報告がある¹¹⁾。そこで、 Ni₃Mo強化相の代替としてNi₃Ti、Ni₃AIの析出を目的にTi、 AIの成分調整を実施した。その結果、通常熱処理後の強度 はマルエージング鋼以上に改善できたが、靭性は1/3程度に 減少した(図中▲)。当靭性劣化材の抽出残渣における析出 物のTEM観察とXRDの結果、及びThermo-Calcの計算結 果より、Fe₂Mo相由来のLaves相が析出したことが靭性の 劣化の要因と判明した。そこで、当該材料においてLaves相 を析出させず、かつ強度も確保できる改良熱処理条件を見 出した。この処理で、QM300の強度、靭性に匹敵する特性 が得られることを確認した(図中◆)。

現在では、溶体化熱処理を省略し、造形後直接時効熱処 理した場合でも、QM300並みの強度と靭性を発揮できるこ とも確認している。

7. 結言

本報では、3Dプリンティングに求められる技術及び山 陽特殊製鋼がこれまで取り組んできた内容について解説し た。

- (1)当社では、ガスアトマイズ装置と球状化処理技術によって、高い流動性を持つ合金粉末を製造している。粉末の流動性を示す流動度は、一般的な海外材約 17.0秒/50gに対して、当社材は約15.0秒/50gと優れている。
- (2) 造形時の割れ制御として、不純物制御及び造形条件 の最適化に取り組んでいる。難造形材といわれている PI713Cにおいて相対密度98.5 %から99.7 %まで 改善し、造形可能となった。
- (3)造形体の高密度化検討として、粉末粒度と造形条件の最適化に取り組んでいる。パウダーベット方式のレーザー装置で使用されている粒度以外にも、粒度に合わせた造形条件の最適化が可能なことを確認した。

Fig.9 Relationship between tensile strength and charpy impact value.

(4) 3Dプリンティングに適した合金例として、Coフ リーマルエージング鋼粉末を開発した。Coフリーマ ルエージング鋼は特定化学物質に対応した合金粉末 で、マルエージング鋼に匹敵する強度と靭性をもって いる。

参考文献

- 1) 才田一幸: 溶接学会誌, 79 (2010), 6.
- 2) 松田福久:山陽特殊製鋼技報,5(1998) 1,8-19.
- 3) 久世哲嗣:山陽特殊製鋼技報, 23 (2016) 1, 31-33.
- 4) 社河内敏彦: 夕---ボ機械, 24 (1996) 11, 661-666.
- 5) 井川博:溶接学会誌,38(1969)9,979-990.
- 6)長谷川正義:ステンレス鋼便覧,日刊工業新聞社,Ⅳ編 実用材料,(1973),559.
- 7)長谷川正義:ステンレス鋼便覧,日刊工業新聞社,Ⅲ編 実用材料5.6 マルエージング鋼,(1973),502.
- 8) 伊藤正和: 特殊鋼, 58 (2009) 2, 4-5.
- 9) 厚生労働省ホームページ (http://www.mhlw.go.jp/bunya/roudoukijun/ anzeneisei48/index.html)
- 10) 久世哲嗣,前田壮一郎,福本新吾:粉体粉末冶金協会 平成30年度秋季大会,2018.
- 11)細見広次,森本啓之,芦田喜郎:鉄と鋼,74 (1988)
 10,2025-2032.