

熱間鍛造における金型寿命向上への取り組み

中溝 利尚*1・笠井 貴之*1・高須 一郎*2

Appropriate tool design for improvement of die life due to reduce both mechanical and thermal load in hot forging Toshifusa Nakamizo, Takayuki Kasai and Ichiro Takasu

- Synopsis: Demand of cost reduction for forging parts becomes severe in these days. It's cost is greatly influenced by tool life. Thus, making tool life long is one of important technological subjects. Factors that determine tool life are mainly both mechanical load and thermal load at forging. It is necessary for improvement of tool life to estimate these factors quantitatively. In this article, these factors are examined by using computer aided analysis about forward and backward extrusion at hot forging. In the result, appropriate tool design and cooling system were introduced with tool load reduction. Then, the actual tool designed by this procedure had three times longer life comparing with conventional one.
- Key words: hot die forging; tool life; mechanical load; thermal load; CAE; FEM; forward and backward extrusion; accumulated friction energy; friction heat; fluid analysis; deformation analysis; thermal analysis; heat check.

1. 緒言

素形材製造技術の中でも特に鍛造技術は,複雑形状部品 を大量に経済的に生産できる技術として,主に自動車産業 とともに成長してきた。しかし,近年の急激な経済状態の 変化や,海外生産への移行,ほかの塑性加工技術の発達な どを背景として,鍛造品を取り巻く環境はますます厳しい ものとなっている。特に,大幅なコスト低減,製品の高機 能化,短納期化などへの要求がますます高まっている。

このようなニーズに応えるため,材料歩留の向上,切削 工程の簡略化を目的として,ニアネットシェイプあるいは ネットシェイプ成形といった精密鍛造による加工工程の効 率化が急速に進みつつある。しかし,このような精密鍛造 化への動きは,金型に作用する応力,摩耗負荷あるいは熱 的負荷を大きくするため,金型寿命の低下がしばしば発生 し,問題となる場合がある。

金型寿命の向上は、トータルコストの低減や成形性向上 の観点から、常に要求される技術課題であり、金型表面処 理、潤滑剤、工程設計など様々な角度からの改善が考えら れる。これらの実施例については、学会報告などでも多々 見受けられ、現在では、総括した寿命予測システムの構築 まで研究が進んでいる例¹⁾⁻⁴⁾もある。

特に熱間鍛造における金型寿命は冷間鍛造の場合に比べ

て短く,割れ,摩耗あるいは塑性変形といった金型損傷が 発生する。これらの金型損傷の原因としては,面圧・すべ り速度などの機械的な因子と,被加工材からの熱流入,加 工発熱あるいは摩擦発熱といった熱的な因子が考えられ る。よって,金型寿命向上を実現するためには,機械的負 荷および熱的負荷という2つの負荷を低減させることが必 要である。そこで本稿では,熱間鍛造でのギア素形材(前 後方押出し形状)を取り上げ,CAE解析を用いて金型にお よぼす機械的負荷および熱的負荷を検討し,金型寿命向上 のための方策を考案した。

2. 金型の損傷形態と発生原因

2・1 金型の損傷形態

熱間鍛造において,金型の損傷形態は,摩耗,割れおよび塑性変形の3つの形態に分類できる。Fig1に金型損傷形態とその影響因子について示す。

摩耗には引っかき摩耗,凝着摩耗などが,割れには過荷 重による早期割れと,サイクル荷重および熱負荷による疲 労破壊がある。熱間鍛造の場合,サイクル的な熱流入を原 因としたヒートチェックによる割れが問題となる場合が多 い。また高温下での長時間負荷によるクリープ変形,高い 熱負荷によって金型角部の降伏点が低下し塑性変形を生じ

^{*1} 技術研究所 プロセス開発グループ

^{*2} 技術研究所 プロセス開発グループ長, PhD

Fig.1. Tool damage form and it's factors

るなどの損傷形態がある⁵⁾。

熱間鍛造の場合,損傷形態の発生割合としては,約7割 が摩耗によるとの報告⁶¹もある。

2・2 金型損傷への影響因子

上述のように金型の損傷は種々の形態があるが,損傷を 引き起こす負荷因子として,大きく分類すると機械的負荷 と熱的負荷に区分することが可能である。前者については 被加工材から受ける面圧と金型-被加工材間の相対すべり 速度等が挙げられ工具摩耗や塑性変形を引き起こす。また 後者については,金型-被加工材間の摩擦発熱,被加工材 からの熱伝達およびヒートチェックなどが挙げられ金型強 度の低下や熱衝撃による割れを引き起こすと考えられる。 つまり,熱的負荷は金型強度の低下および熱疲労などの影 響をもたらし,機械的負荷は金型損傷進展の駆動力として 作用する。

熱間鍛造においては,熱的負荷と機械的負荷の影響が組 み合わさり損傷が発生する。具体的には,熱的負荷により 金型強度が低下し,さらに軟化した金型に機械的負荷が加 えられて摩耗が発生するといった損傷プロセスが考えられ る。

2・2・1 機械的負荷

被加工材が金型に及ぼす機械的負荷として,金型表面に 対する面圧およびすべり速度が挙げられる。これらの機械 的負荷を要因として金型損傷が発生するという知見もあ り,これらの機械的負荷を定量的に見積もり,その絶対量 を低減することは,金型寿命を向上するための有効な手段 である。

ただし現場においては,機械的負荷を鍛造荷重という加 工系全体に対する巨視的な値でしか可視化できない。鍛造 荷重は金型負荷を評価する1つの指標ではあるが,金型コ ーナー部などの局所的な金型負荷を判断する指標としては 不十分である。特に,金型の寿命は,コーナー部分での摩 耗や変形など局所的なケースによるものが多いことから, 局所的な金型負荷の程度を見積もり評価する必要が生じ る。

このような局所的な金型負荷を見積もる際には,CAE解 析が有効な手段となり得る。Fig2に,CAE解析から得られ た面圧およびすべり速度の一例を示すが,この例では金型 段付部上面における面圧および滑り速度が高いことが確認 できる。このように,CAE解析により金型の局所的な負荷 を定量的に見積もることができ,またその経時変化を得る ことも可能である。

2・2・2 熱的負荷

熱間鍛造と冷間鍛造に用いる金型の寿命を比較すると, その違いは歴然としており,一般的に,冷間鍛造では数万 ショット ~ 数十万ショットといった高寿命であるのに対 し,熱間鍛造では数千ショット ~ 数万ショット程度である。 この寿命の極端な相違には熱的負荷の影響も大きいと考え られる。

熱的負荷には, 被加工材からの熱伝達と摩擦発熱が挙げ られる。前者については, 被加工材温度および加工発熱量 が大きく影響をおよぼし,後者については金型表面での面 圧, すべり速度および摩擦係数との関連が大きい。

3.ギア素形材への適用

3・1 鍛造設備と生産条件

当社関連会社で製造している熱間鍛造製ギア素形材(前

Normal stress

Relative sliding velocity

Fig.2. Example of normal stress and relative sliding velocity

後方押出し形状)は,他の部品に比べて金型寿命が著しく 短く,コストや生産性の点で問題となっていた。

本報では,本部品についてCAE解析を利用し,金型寿命 向上の方策を考案した。

本部品を製造しているプレス機は横型高速鍛造機(フォ -マー)であり,軸対称部品からギアなどの複雑形状部品 を製造している。また構造上,高速でのトランスファが可 能であるため,80個/分と高効率の加工が行える。被加 工材は,高周波誘導加熱により1100 程度まで加熱し, 切断・据込・成形の各工程を経て最終形状を得る。潤滑剤 は,離型剤としての役割の他に,金型へ噴霧することで冷 却剤としての役目も果たしている。

Fig3にギア素形材の鍛造工程図を示す。 φ 36の素材を, 第1工程にて据込み,第2工程にて前後方押出形状へと加 工を行う。なお,第2工程は閉塞鍛造である。被加工材の 鋼種はSCR420,金型の鋼種はQHZである。QHZは当社 開発鋼で,摩耗,ヒートチェックの発生を防止するため高 温強度を向上させ,割れ,欠け防止のために靭性を改善し た,熱間・温間鍛造用セミハイス鋼である。

この金型は内部に冷却水が流れる構造となっており,金 型内部で冷却水を還流させることにより,型温度の上昇を 抑制している。また,潤滑剤を含んだ冷却水が金型下面よ り入り,金型上部にて射水されることにより,外面からの 冷却および潤滑の役目を果たしている。

Fig.3. Forging process

3・2 金型損傷の実態,および損傷原因

本部品の金型における損傷はFig3のA部に対応するダイ スコーナー部において発生し、金型寿命は他の部品に比し ても非常に短かった。金型の外観を調査したところ、金型 全面にヒートチェックが発生しており、材料流動が最も大 きく、熱影響を受けやすいと思われるコーナー部分が摩 耗・変形し、初期の形状を保っていないことが判明した。 このような金型のコーナー部分、特にコーナーRが小さい 箇所は、大きな熱的負荷を受けやすく、材料流動による摩 擦すべりの影響も大きいと考えられ、必然的に損傷が発生 しやすい場所と思われる。損傷発生部位については、損傷 のほとんどはR部、コーナー部分で発生しているとの報告⁶⁾ もある。 以上のことから当該金型の損傷メカニズムは, i) 高温 の被加工材が繰り返し接触することによる熱疲労, ii) 金 型の熱軟化, iii) 鍛造時の面圧, すべり速度の急激な上昇 による局所変形が考えられ, これらの機械的・熱的負荷要 因が組合わさり, 型軟化による局所的な塑性変形が発生し, 早期に損傷が発生したと推察される。

4. 解析方法

4・1 CAE解析モデル

上述のように推測される損傷原因から,金型寿命向上の ためには機械的負荷および熱的負荷のそれぞれを低減させ る必要があると考えられる。機械的負荷の低減には金型形 状の変更,熱的負荷の低減には冷却系の変更ならびに摩擦 発熱の低減が対策方法として挙げられる。そこで第2工程 の前後方押出し加工に着目し,CAE解析を用いて対策方法 の最適条件について検討を行った。

この機械的負荷および熱的負荷を算出するため, Fig4の ようなモデルで解析を行った。まず,材料変形解析を行い, 局所的な面圧・すべり速度などの機械的負荷を算出し, 『累積摩擦仕事量』にて評価を行った。次に,金型温度解 析により熱的負荷を算出するが,ここで熱的負荷には,前 述の通り加工発熱,摩擦発熱ならびに冷却水による抜熱の 影響が考えられる。そこで,材料変形解析から得られた仕 事量を熱量に変換して伝熱解析に盛り込み,摩擦発熱の影 響として温度解析に反映させた。冷却水による抜熱に関し ては,流体解析にて内部冷却水の流速を算出し,伝熱解析 に反映させた。このように,材料変形解析,金型温度解析 および流体解析を駆使し,高精度な鍛造工程の再現を試み た。

Fig.4. CAE Analysis Model

4・2 機械的負荷

機械的負荷を定量的に把握するため、小坂田らの開発した二次元剛塑性FEMコード「RIPLS-FORGE」でを用い、 材料変形解析を行った。当該部品は軸対称形状であるため、 Fig5に示すような解析領域でモデル化を行った。

本報では,CAE解析を駆使して得られた結果をもとに,

機械的負荷を評価する指標として式(1)で表される『累 積摩擦仕事量 ψ』^(9),9)を算出し,金型寿命向上の検討を行 った。Fig6に式(1)に用いた変数に関する模式図を示す が,面圧Pにより発生する摩擦力と接点のすべり速度との 積を,時間積分した値であり,鍛造加工中に被加工材が, 金型の単位面積当たりに与えた仕事量を意味する。

$$\psi = \mu PVdt$$
 ... (1)

μ	: Coulomb friction coefficient	P: Normal stress
V	: Relative Sliding velocity	dt : Contact time

Fig.6. Schematic diagram of accumulated friction energy

Table1にCAE解析条件を示す。現場での誘導加熱炉の 抽出温度が1100 であったため,解析で用いた変形抵抗 には,SCR420の1100 に相当する値を用いた。また, 金型と被加工材との摩擦係数を決定するため,実鋼とCAE とのメタルフローの比較を行った。その結果をFig7に示す が,クーロン摩擦係数を0.3とした場合に,両者のメタル フローが良く一致することが分かった。

Table1.	Deformation	analvsis	conditions
rubio r.	Doronnation	anaryoio	contantionio

FEM code	RIPLS-FORGE
Flow stress /MPa	σ =79.4 $\dot{\varepsilon}$ ^{0.097}
Initial number of mesh	500
Coulomb friction coefficient	0.3
Stroke speed /mm• s-1	560

Fig.7. Comparison of Steel and CAE metal flow

以上の条件にてCAE解析を行い,金型への機械的負荷の 低減を目的に,損傷部近傍の金型形状の最適化について検 討を行った。金型損傷部であるダイスコーナーにおける材 料挙動に最も影響を及ぼすと考えられる。Fig8に示す,押 出し高さH(mm),テーパ角 θ(deg),コーナーR(mm) の3つの項目について,Table2に示す範囲で変化させて, 機械的負荷に及ぼす影響について調査した。

Fig.8. Shape parameters and investigation region

Table2. Shape parameters

Extrusion height H /mm	3 ,4,5
Taper angle θ /deg	2 ,3,5
Corner round R /mm	1 , 2 , 3

Bold : normal condition

4·3 熱的負荷

次に,熱的負荷を算出するため,被加工材からの熱流入, 内部冷却水による抜熱,および摩擦発熱を評価した。今回 の事例では,損傷部が局部的に高温となり型軟化が発生し, 金型の損傷を助長した可能性がある。そこで熱的負荷の低 減を目的に,金型冷却系の最適化について検討を行った。

本報では,摩擦発熱については,上述した『累積摩擦仕 事量 ψ』が損失することなく全て発熱に利用されたものと して摩擦仕事を熱量に換算して熱的負荷を算出した。また, 本報で使用したダイセットは,パンチ内部に冷却水が流れ る構造を有しており,冷却水による抜熱効果も考慮した。 Fig9に示すように金型冷却系に大きく影響を及ぼすと考 えられる,冷却水圧力P(MPa),送り管径D₁(mm),射 水管径D₂(mm)の3つの項目について,Table3に示す条 件で検討を行い,金型最高温度を比較することで,熱的負 荷に及ぼす影響について評価を行った。

Fig.9. Thermal analysis Model

4・3・1 金型 - 冷却水の熱伝達率の決定

冷却水は, Fig10の金型下部より入水圧力を受け,送り 管内へと流入する。そして,射水管より金型表面へと射水 され金型を冷却する役割を果たしている。金型の熱的負荷 を算出するためには,金型と冷却水との熱伝達を考慮しな ければならない。金型と冷却水との熱伝達率は,式2¹⁰に 示すように,内部冷却水の流速と水温,および冷却水と金 型の接触面積により決定した。

h=(2.20+003
$$t_b$$
) × 10⁴ $\frac{M^{0.8}}{d^{0.2}}$... (2)

h : Heat conductance

- t_b : temperature of cooling water
- M : Amount of water d : Diameter of pipe

ここで,冷却水の流速は,冷却水圧力,送り管径,およ び射水管径に依存するため,簡便に見積もることは困難で ある。そこで流体解析により,金型内部での冷却水流速分 布を求めた。ここで,Fig10に示すように,金型内部での 射水管の配置は30°毎に放射状に配置された構造を有し ているため,周期対称性を考慮して3次元モデルで解析を 行った。解析条件はTable4の通りである。流体解析には, 「Fluent」を用いた。

Table4.	Fluid	analysis	conditions

Analysis model	3-Dimension	
Turbulance model	k- ε model	
I dibulence model	(used default value)	
Fluid Density /kg • m ⁻³	998.2	
Viscosity /kg \cdot (m \cdot s) $^{-1}$	0.001	
Gravity /m • s ⁻²	9.8	

4・3・2 摩擦発熱量の見積もり

更に,熱的負荷の要因と考えられる摩擦発熱の影響を検 討した。材料変形解析にて得られた結果から,金型表面に 働いている累積摩擦仕事量 ψを算出した。この摩擦仕事量 が全て摩擦発熱に費やされるとし,この仕事量を熱量に換 算し,解析ではこの熱量を金型との接触面における熱流束 として境界条件に与えるといったモデル化を行った。

4・3・3 金型温度分布の予測

熱的負荷の解析(金型伝熱解析)については,汎用解析 コード「MARC」を用いた。金型形状の周期対称性から, Fig11に示す30。領域を取り出した1/12モデルにて,被 加工材からの熱流入に加え,冷却水による抜熱および摩擦 発熱を考慮した解析を行った。

ここで鍛造サイクルが80個/分と非常に高速なため, 1100 一定の被加工材が金型上面に常に接触している状態として解析を行った。また金型損傷が発生した時期は鍛造数量が1,000個のオーダーであるため,金型温度は定常になっていると考えられる。そのため解析では系の温度が

	normal	Pressure up	Feeding pipe	Shooting pipe
			diameter up	diameter up
Injection pressure P /MPa	0.392	0.784	0.392	0.392
Feeding pipe diameter ϕ D ₁ /mm	14	14	21	14
Shooting pipe diameter ϕD_2 /mm	1	1	1	2

定常状態となった状態における結果を参照した。Table5 に金型伝熱解析条件を示す。

Fig.11. Overview of thermal analysis model

Table5.	Thermal	analysis	conditions
---------	---------	----------	------------

Analysis model	30deg-region		
	(1/12 model)		
Material temperature /	1100		
Initial temperature of tool /	30		
Conductivity /J \cdot (m \cdot \cdot s) $^{-1}$	33.49		
Specific heat /J · (· kg) · 1	627.90		
Material - Flame heat conductance /J· m $^{\cdot 2}$ · $^{-1}$ · s $^{\cdot 1}$	3348.80		

5. 解析結果

5·1 機械的負荷

金型形状を変化させたときの,損傷部近傍での累積摩擦 仕事量 ψ の計算結果を,Fig12~14に示す。累積摩擦仕 事量 ψ は,押出し高さHを現状より減少させると減少する 傾向にあり,またテーパ角 θ およびコーナーRを現状より 増加させることによっても減少する傾向にあることが分か った。

このことはダイスコーナー部近傍での材料流動と関連が ある。つまり押出し高さHを小さくすると被加工材との接 触時間が短くなり,テーパ角 θ およびコーナーRを大きく するとコーナー部での材料流動が良好になり材料から受け る面圧が小さくなるため,累積摩擦仕事量 ψ が低減すると 考えられる。

Fig.12. Relationship between H and ψ

Fig.13. Relationship between θ and ψ

Fig.14. Relationship between R and ψ

この結果より機械的負荷を低減させるためには,高さ H=3(mm),テーパ角 θ =5(deg),コーナーR=3 (mm)が最適金型形状と分かった。この最適条件の金型形 状について解析を行い,現状の累積摩擦仕事量 ψ の比較を 行った結果,Fig15に示すように現状よりも39%程度摩 擦仕事を低減できることが判明した。これにより金型損傷 進展力である機械的負荷が低減することから,金型寿命は 向上すると推測される。また機械的負荷が小さくなること は,摩擦による発熱量も小さくなることを意味するため, 熱的負荷の低減効果も期待できる。

Fig.15. ψ reduction due to tool shape improvement

5·2 熱的負荷

Table6に流体解析により得られた,射水管出口におけ る流速 ωと熱伝達率hの関係を示す。この結果から,射水 管径を増加させる条件が射水管出口における流速を最も速 くすることができ,その結果,金型 材料間の熱伝達率を 最も向上することができることが分かった。このことは式 (3)から分かることだが,射水管径の断面積の増加に伴 って冷却水の流量が増加し,金型と冷却水との熱交換率が 向上したことにも起因している。

伝熱解析結果の一例をFig16に示す。最高温度を示す部 位はダイスコーナー部であり,実機での損傷部分と一致す る。この結果から,損傷が発生した箇所は冷却水による抜 熱を受けにくく,被加工材からの熱が蓄積されやすい部位 であることが分かる。

被加工材よりの熱流入と、冷却水による抜熱を考慮した 結果をFig17に示す。ここでは、摩擦発熱の効果は考慮し ていない。また、金型最高温度を比較すると、射水管径を 現状の2倍にした条件の場合、冷却効果が最も高く、約 60 の温度低下が期待される。

一方,摩擦条件を考慮した伝熱解析結果をFig18に示す。 金型を従来形状から前節で述べた最適金型形状に変更した 場合,約15 の温度低下が見込まれる。さらに,この最 適金型形状に加えて,冷却系に改善を施した場合,現状よ り約75 の温度低下が期待される。また,この結果から, 今回の事例の場合,温度低下に関する寄与率としては,冷 却系の改善の方が効果は大きいと判明した。

Fig.16. Thermal distribution of lower tool

Fig.17. Result of thermal analysis without friction heat

		-		
	normal	Pressure up	Feeding pipe	Shooting pipe
			diameter up	diameter up
Shooting velocity $\omega/m \cdot s^{-1}$	15.6	22.3	14.6	18.3
Material - Tool				
heat conductance h	60.7	80.8	57.8	182.1
/ 10 ³ • J• m ⁻² • ⁻¹ • s ⁻¹				

Table6. Result of fluid analysis

Fig.18. Result of thermal analysis with friction heat

6. テスト鍛造による確認

以上の結果から,金型形状変更により機械的負荷よりも 熱的負荷の低減率が大きく改善効果が期待できること,具 体的には射水管径を現状より2倍に増加させることで熱的 負荷を大幅に低減できることがわかった。実際,金型表面 形状を変更するよりも金型射水管径を変更する方が簡便で あり,テストでは射水管径のみを変更した。射水管の変更 に際しては,金型の加工性および強度の点から管径に制限 があるため,管径を現状の1.3倍に変更した金型にてテス トを実施した。その結果,従来と比較して約3倍の金型寿 命を得ることができた。

7. 結言

金型寿命向上を目的として, CAE解析を用いて金型に作 用する機械的負荷と熱的負荷の検討を行い,現状工程より も機械的負荷および熱的負荷を低減できる最適な金型現状 および冷却系を見出すことができた。その結果,負荷低減 率,工程変更の簡便性,および金型加工性・強度の観点か ら,射水管径を変更する方策がリーズナブルであることが わかり,射水管径を従来比1.3倍としてテスト鍛造を行っ た結果,現状工程と比較して約3倍の金型寿命を得ること ができた。

文 献

- 1)松井宗久,田中利秋,土屋能成,中西広吉,鈴木寿之,野上芳和,鈴 木敏孝:第32回塑性加工春季講演会論文集(2001),73.
- 2) 土屋能成,中西広吉,田中利秋,松井宗久,明石忠雄,鈴木寿之,野 上芳和:第32回塑性加工春季講演会論文集(2001),75.
- 3) 鈴木寿之, 野上芳和, 鈴木敏孝, 中西広吉, 土屋能成, 中西利秋, 松 井宗久:第32回塑性加工春季講演会論文集(2001),77.
- 4)藤川真一郎,石原章,樹村勝正,伊澤昌敏,小豆島章:第51回塑性 加工連合講演会論文集(2000), 167.
- 5) 辻井信博:山陽特殊製鋼技報,4(2000),65.
- 6) 鍛造技術研究所,素形材センター:鍛造用金型寿命向上調査研究報 告書(1996),3.
- 7) 森謙一郎, 島進, 小坂田宏造:日本機会学会論文集, 45(1979) No.396, 965.
- 8) 中溝利尚,高須一郎,笠井貴之:第51回塑性加工連合講演会論文集 (2000), 169.
- 9) 吉田忠継, 尾崎勝彦, 中崎盛彦, 矢野正和, 笠原義夫: 山陽特殊製鋼 技報,3(1996),25.
- 10)日本機会学会: 伝熱工学資料 改訂第2版, 27.

著者

高須

利尚

笠井 貴之

Sanyo Technical Report Vol.9 (2002) No.1